
N94- 33631

END EFFECTOR MONITORING SYSTEM:

AN ILLUSTRATED CASE OF OPERATIONAL PROTOTYPING

Jane T. Malin and Sherry A. Land
Intelligent Systems Branch, ER2

NASA Johnson Space Center
Houston, TX 77058

Carroll Thronesbery
The MITRE Corporation

1120 NASA Road 1

Houston, TX 77058

ABSTRACT. This paper introduces operational prototyping, to help developers apply
software innovations to real-world problems, to help users articulate requirements, and to
help develop more usable software. Operational prototyping has been applied to an expert
system development project. The expert system supports fault detection and management
during grappling operations of the Space Shuttle payload bay arm. The dynamic exchanges
among operational prototyping team members are illustrated in a specific prototyping
session. We discuss the requirements for operational prototyping technology, types of
projects for which operational prototyping is best suited and when it should be applied to
those projects.

1. INTRODUCTION

We developed the concept of operational prototyping during a case study of NASA
intelligent systems [3], which was conducted to identify useful types of human-intelligent
system interaction. During that case study, we observed that developers supporting a large
flight controller group were using highly successful methods, although (or perhaps
because) they were not following standard software engineering practices. Though their
methods were informal, they developed fieldable software rapidly, satisfied their user
customers, and avoided the pitfalls of wandering development, lack of documentation and
excessive nonstandard custom software. Their methods interested us, not only because of
their success, but because they seemed to also address problems that human-computer
interaction designers have in common with users. That is, usability evaluation and human
factors concerns often have too little effect on delivered software. These methods

emphasized the user and usability, and achieved success at lower development cost, by
using rapid prototyping methods and by exploiting the advanced graphics technology and
automated object-oriented programming capabilities available in expert system development
environments.

Traditional software engineering has weaknesses in the areas of helping users to articulate
system requirements, assisting technology insertion, and providing innovative task support
to users. Consequences of these weaknesses include slow and late deliveries, and products
that require costly rework to satisfy customers. The practices we observed were strong
where traditional software engineering was weak. Since we could expect that advanced
software development tools would become more widely available to software developers in
the future, we analyzed these methods and began to describe and codify them. We refined
them to integrate with software engineering concepts and human-computer interaction
concerns [1].

We call these methods operational prototyping. Operational prototyping is an approach to
aid the development of innovative software applications for complex tasks, such as those

found in aerospace operations. Innovative applications are those for which important
aspects are not well understood by software developers. For instance, the operational
prototyping approach introduced in this paper is based on applications of artificial
intelligence technology to real-time fault management problems.

461

__ I_qE _.,,_lK HOT FI4..IMRi_

Operational prototypes are called "operational" because they can be used in an operational

setting to demonstrate how a new ap.proach solves a specific problem and supports user
task performance. Since the prototypmg is user-driven, these systems are more likely to be
operations-scenario-driven than systems from many traditional, requirements-driven
projects. They are called "prototypes" because of their informal, iterative development.
Although the development schedule is informal, the addressing of system requirements is
rigorous. This must be so, since the stakes are high: these prototypes are fielded for side-

by-side use and evaluation in the operational setting. They are intended to stand in until the
"software engineered" versions are developed, and can be used to validate them.

2. EXAMPLE APPLICATION

Recently, we have had the opportuni.t 7 to further evaluate and refine these methods by
doing our own operational prototypmg. We have been using these methods while
developing a monitoring and fault detection expert system for flight controllers, the
DEcision Support SYstem (DESSY) End Effector application. DESSY is an object-
oriented, rule-based, decision support system to assist ground-based flight-controllers in

monitoring and managing faults in the Shuttle payload bay arm. It is being developed
incrementally: the end effector module is the second of several modules being developed
for arm subsystems. The End Effector module helps to monitor the grappling device at the
end of the arm, which makes a secure connection with the payload so that it can be

manipulated by the arm.

On the one hand, the DESSY End Effector development approach resembles traditional

software development because there are similar development activities, which are initiated
in about the same order as a traditional waterfall development approach. A requirements

analysis drove some initial designs for displays, object hierarchies and structures, rule
organizations, and testing scenarios.

On the other hand, our operational prototyping methods differ in important ways from
traditional development methods. First, the development activities are being addressed

iteratively. No attempt has been made to state all the requirements in detail before exploring
the implications of those requirements by design, implementation, and evaluation of a
prototype. Since DESSY is an innovative application, it is not possible to understand the
requirements fully before beginning the design. The second major difference is use of the
prototype in operational scenarios as a means for involving the customer in analysis,
design, implementation, and evaluation. Our flight controller representative offers

suggestions for solving development problems rather than j.ust passing judgment on the
decisions we have already made. Finally, we refine the requn'ements and design based on

our experience with the prototype. This is where the magic of operational prototyping
happens.

2.1. Example Operational Prototyping Session

To convey the sense of operational protot.yping in a concrete fashion, we present an
example of a specific operational protot.ypmg session early in the development of the
DESSY End Effector module. In this session, we made improvements in the screen layout

and discovered new requirements for the intelligent system.

Figure 1 shows an original screen layout sketched on the Macintosh before the prototype
was developed. The end effector consists of two mechanisms: a snare and a rigidizer.
The snare has wires which wrap around a pin protruding from the payload, thereby

capturing the payload. The rigidizer pulls the snare into the interior of the end effector until

462

iqidizerStat.e

DerloId
Jgidizer St.atus
Nominal

ICommands _i_.,'._i_.'.._._!_._._] _:_i.

RIG CMD RIG DR RIG DRV

Figure 1. Before Operational Prototyping Session

-;tatus

Nominal
Snare State Rigidizer State

Closed Derigid

m ma nds:i_:i:i:i:i:i:i:i:i:i:ii!:i:i:i_iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii!ii

!iii;!;iiii_!iiiiiiii!!_;::::;;:::::7:;ii_;:::;':;;i:i'-";i"_::;iT!"iii _alkba _i.:_s_,_'.._._._:._._::':::::'_':_°:_'%:".......'_""::_':_:_::_,'_;_,''.:iJ.....

Figure 2. After Operational Prototyping Session

the end effector and the wall of the payload press against one another, making rigid the
connection between the arm and the payload. These two mechanisms are represented

iconically in the central portion of the screen, and these icons move to portray the current
state of the each mechanism. Most of the remainder of the screen is organized around the

icons, with rigidizer information on the left and snare information on the right. Because
this design is neat, orderly, and logical, all the team members, including the user, were
initially satisfied before the prototyping began.

During the first prototyping session, however, it became apparent that with the original
screen layout, events in nominal capture and release sequences were difficult to follow in
real time. Some end effector events last only a second and can be accompanied by seven
display changes. With the design in Figure 1, none of us (not even our expert flight

463

controller) could adequately monitor a nominal sequence of events in real time. As a
group, we arrived at the solution depicted in Figure 2.

The layout in Figure 2 is more compact, and the commands have been re-organized

according to the direction of movement rather than mechanism. For example, the capture
and rigidize commands are represented contiguously because both commands are used
when capturing a payload. By the same token, the derigidize and release commands are
represented contiguously because they are both used when releasing a payload. With this
new display layout, we can verify that critical events take place for nominal capture and
release sequences. We discovered the need for improvement by interacting with the
prototype, and we arrived at an acceptable solution by interacting with one another and
experimenting with the prototype.

Operational prototyping is not just for improving user interfaces. Another result of this
prototyping session was correction of the logic for inferring end effector states from
telemetry data. While interacting with the prototype, the flight controller identified an error
in our understanding of the sequence of command telemetry. This, in turn, affected the
application logic for inferring end effector states. We had all looked at this information
before, but its inaccuracies were evident only when the experienced flight controller was
observing the events unfolding before him.

Improvements from this session occurred in the screen layout, and in understanding of
operational sequences and their implications for the logic in the application. Because this
session occurred early in DESSY End Effector development, the primary improvements
were in our understanding of system requirements. Improvements in later sessions have
also emphasized design and implementation. It is hard to imagine how these improvements
could have been achieved in such a timely way by text-based requirements analysis or by
human factors evaluation later in the development process.

2.2. Analysis of Operational Prototyping Benefits

What makes the magic of operational prototyping happen? One contributor to the magic is
the critical expertise included in the development team. On the DESSY End Effector
development team are (1) a flight controller, (2) a computer scientist, specializing in
intelligent systems, and (3) a human factors engineer, specializing in systems analysis,
software engineering and intelligent systems. The flight controller contributes subject
matter expertise based on his engineering background and years of experience in
monitoring, detecting failures, and managing failures in the end effector. This expertise
helps to ensure the quality of our intelligent system application. The flight controller
contributes equally valuable expertise as a user. This user member of the team knows the
most about the tasks to be supported by the new software application, and its context. This

is critical if the new application is to successfully improve productivity, reliability and
safety of operations tasks.

Another major contributor to operational prototyping magic is that the whole team interacts
with the prototype and experiments with ideas to improve the design. Because we interact
with a prototype in an operational scenario and change the screen designs during the
session, each person is able to see the implications of design decisions. What You See Is
What You Get, or WYSIWYG, is a descriptor for applications which immediately show
the full implications of user input. Prototyping is the WYSIWYG of analysis and design.

Because we all interact with the prototype, we are able to consider different design
concerns and viewpoints simultaneously. The implications of a proposed change can be
evaluated from engineering, intelligent systems, users, and human factors perspectives

464

becausethe team has expertise in all theseareas. Because we can consider these
viewpoints simultaneously, we are able to make dynamic tradeoffs. For example, if a new
change seems ideal except for implementation feasibility (e.g., a performance or a
development time impact), the expert in that area can voice an objection along with the
reason for it. At that point, a brainstorming session can ensue, in which all participants can
propose potential alternatives. In this situation, with all experts present to help solve the
problem, a solution that satisfies the concerns of each is more likely to be developed. In
fact, this is the motivation behind the concurrent engineering impetus in systems
development [2]. Finally, operational prototyping magic happens when the team focus is
on generating improvement options, rather than on evaluating the prototype for acceptance
or rejection.

What is the magic? Quite simply, the magic of operational prototyping is a quickly
improved design. The application design is improved by concurrent and cooperative
design changes, and thus meets requirements and design constraints better than could have
been achieved by team members working separately. It is achieved more quickly because
team members with each type of critical expertise meet around the prototype, exploring the
implications of design decisions from each perspective.

3. INTEGRATING SYSTEM DESIGN WITH OPERATIONAL PROTOTYPING

3.1. What Projects are Best for Operational Prototyping?

The strengths of operational prototyping appear to be complementary with traditional
software engineering. Traditional software engineering practices are reasonably adequate
for projects with stable requirements; whereas operational prototyping is well-suited to
projects whose requirements are initially unstable, or where continuous improvement is a
goal.

Two types of development projects have initially unstable requirements: those for
innovative applications of new technology and those for innovative support of user tasks.
Innovative applications of technology to specific problems, by their innovative nature, are
unproven and unfamiliar. Unproven designs make managers of project resources uneasy.
Prototypes can demonstrate the feasibility of an innovative application to ease the concerns
of those managers. Because of the abbreviated development cycle, prototypes allow the
evaluation of multiple innovative alternatives so that the best one can be selected. Thus,
innovative applications of technology to specific problems are good candidates for
operational prototyping.

Another type of project whose requirements are inherently unstable are those which provide

innovative support of user tasks. The First contribution of operational prototyping is to
give users a proper medium in which to express their requirements. Operational
prototyping allows users to explore the implications of their expressed requirements before
expending considerable resources for a definitive requirements document. Operational

prototypes can help to clarify hidden tasks and requirements. For example, user
requirements for support for supervising, overriding and updating intelligent systems have
not been immediately evident in most expert systems projects. Another contribution is to
allow initial requirements to change early in project development, when those changes are
the least costly. The requirements for a software application change when the application is
introduced into the workplace. An operational prototype can help to drive out many of
those changes earlier, before the first delivery, when the design can be changed more easily

and cheaply. The operational prototype can also remain available to support further design
for continuous improvement by the customer after the system is delivered.

465

In summary,thebestprojectsfor operationalprototypingarethosewhoserequirementsare
unstable. Development projects which fit this description are those which involve
innovativeapplicationsof newtechnology,thosewhichinvolve innovativesupportof user
tasks,andthosewherecontinuousimprovementis acustomergoal.

3.2. When Is theBestTimetoApply OperationalPrototyping?

The best time for operationalprototyping is at early stagesof projects. Operational
prototypingis arequirementsarticulationprocesswhichacceptspre-requirementinputsand
producesa working prototype anda setof stabilizedrequirementsto supportfull-scale
development. From that point, the full-scale developmentand integration of the new
systemcan proceedaccording to traditional softwareengineeringapproaches. Since
operationalprototyping will have stabilized the systemreqmrements,the traditional
approachesshouldbeevenmoreefficientandlesssusceptibleto unexpecteddelays. Thus,
operationalprototypingcanbring initially riskyprojectsto a sufficientlevel of maturity for
traditionaldevelopment.

The operationalprototype canprovide additional benefits. If measuresare taken to
overcomepotentialsafetyandreliability concerns,theoperationalprototypecanbeusedto
provideinterim usertasksupportduringfull-scaledevelopment.It canalsobemaintained
to helpusersarticulatethe inevitablechangeswhichwill occurin thefutureastaskschange
andexperienceis gainedwith newsystems.

Theseroles for operationalprototyping imply sophisticatedsoftwaresupport, both for
prototyping and for side-by-sideoperation in control centers. Current commercial
technologyappearsto bepreparedfor thischallenge.

3.3. Rolesfor HumanFactorsPersonnelin OperationalPrototyping

Operationalprototypingalsoimplieschangesin therolesof systemdevelopers.Human
factorspersonnelhavemuch to gain from concurrentengineeringmethodssuchasthis.
Thereis hopethat their rolescanchangefrom onesof frustratedguidelinesenforcersand
evaluatorson thesidelines,to positiveactivedevelopers.Humanfactorspersonnelcan
becomevaluableteammembers,helpingwith developmentof operationaltest scenarios,
andfacilitatingprototypingsessionswhile theyrepresentusabilityandhumanfactorsstyle
concerns.

We arecurrentlydevelopinga feasibilityprototypethatincludesreusableandmodifiable
softwarelibraryelementsin theprototypingsystem.Theselibraryelementscanenforcethe
concernsof severaltypesof systemdevelopers,includinghumanfactorspersonnel. For
example,library elementscanembodyhumanfactorsguidelinesin designsthatwill bethe
flu'stthingstheprototypingteamsuse. Insteadof refining guidelinesdocumentsandstyle
guides that are difficult to use, humanfactors personnelcan participate in design of
applicationelementsthatconform to their concerns,andthat canbeusedimmediatelyin
prototyping.

4. RELATEDWORKAND CONCLUSION

A usefulsourcefor refining theconceptof operationalprototypinghasbeenBoehm'sspiral
model [4]. The spiralmodelshowshow to placeoperationalprototypingandtraditional
software engineering in the sameproject developmentlife cycle. It shows how to
accommodateiterativedevelopmentwhile maintainingasenseof directionfor theproject.
It alsoshowshow to accommodatechangingrisk priorities throughperiodicevaluations,
giving theearlyprojectdevelopmentarisk-driven,ratherthanadocument-drivensourceof

466

direction. Finally, it helpsto identify what risks to address within each prototyping
iteration as the project matures.

Operational prototyping has two primary objectives: (1) to demonstrate the feasibility of
new application, (2) provide interim operation during full-scale development. It is intended
to be complementary to traditional software engineering approaches rather than a
replacement for them. It complements them by addressing the risk which is most
disruptive to traditional approaches: unstable requirements. Software engineering
organizations can complete full-scale development for successful operational prototypes,
while the operational prototype provides interim task support to its user. After full-scale
development is completed, the operational prototype can serve as a test-bed for future
enhancements. Because operational prototyping is a requirements articulation process, the
primary emphasis is on analysis, though the quality of that analysis is evaluated by
designing, building, implementing and using the prototype.

Operational prototyping helps developers to apply new technology to real-world problems
by helping software developers, subject-matter experts, and human factors experts and
users to quickly explore the implications of requirements, design, and implementation
decisions. Operational prototyping helps users to articulate their requirements for systems
that use new technology, and it helps developers to manage the risks associated with new
technologies. Consequently, it can help reduce the costs of both development and

operations, while improving the quality of both.

AKNOWLEDGEMENT

We would like to acknowledge the contributions of the Remote Manipulator System (RMS)
flight controller section at Johnson Space Center/NASA (DF44), especially those of
Salvator A. Ferrara. These contributions have added significantly to the success of the
DESSY project described in this article. The members of the RMS section have contributed
to both the strategic direction of DESSY planning and the technical knowledge concerning
user tasks and the engineering of the RMS.

REFERENCES

° Malin, J.T., & Thronesbery, C.G., "Analysis and Design of Intelligent Systems: The
Role of Operational Prototyping," presented at JSC Training Seminar, HUMAN-
COMPUTER INTERACTION DESIGN: MAKING INTELLIGENT SYSTEMS

TEAM PLAYERS, NASA, Lyndon B. Johnson Space Center, Houston, TX, 1992.

, Erb, D.M., "COMPUTER-AIDED SOFTWARE ENGINEERING (CASE): A 15-
YEAR VISION AND RECOMMENDATIONS," MTR 92W0000104, The MITRE

Corporation, McLean, VA, 1992.

, Malin, J.T., Schreckenghost, D.L., Woods, D.D., Potter, S.S., Johannesen, L.,
Holloway, M., & Forbus, D., "Making Intelligent Systems Team Players: Case
Studies and Design Issues." NASA TECHNICAL MEMORANDUM 104738, NASA,

Lyndon B. Johnson Space Center, Houston, TX, 1991.

4. Boehm, B.W., "A Spiral Model of Software Development and Enhancement," IEEE
COMPUTER, Vol. 21, No. 5, 1988, pp. 61-72.

467

